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Abstract The densities and kinematic viscosities of 10 binary subsystems of the
regular quinary system, benzene (1) + toluene (2) + ethylbenzene (3) + heptane (4) +
cyclooctane (5), were measured at 308.15K and 313.15K over the entire composi-
tion range. The viscosity-composition data reported herein were utilized to examine
the predictive capability of some viscosity models, namely, the predictive version
of the McAllister model, a group contribution method (GC-UNIMOD), a general-
ized corresponding states principle (GCSP), and the Allan and Teja correlation. The
results of testing showed that the McAllister model outperformed all other mod-
els except for systems containing cyclooctane. The results also showed an over-
all average absolute deviation (%AAD) of 1.25% for systems that did not contain
cyclooctane.

Keywords Binary mixtures - Density - Regular solutions - Viscosity - Viscosity
models

1 Introduction

Reliable engineering design of most mass and heat transfer equipment requires accu-
rate viscosity and density data. Moreover, an understanding of the behavior of liquid
mixtures and their relation with temperature is extremely important for many chemical
process applications.

In addition, a knowledge of the dependence of viscosities of liquid mixtures on
composition, which is scarce in the literature, may lead to a clearer picture of the
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interactions between the different molecules involved in such mixtures. This in turn
may help in developing new predictive models for the dependence of viscosity on
composition.

The present work aims at reporting viscosity and density data for 10 binary liquid
solutions at 308.15K and 313.15K over the entire composition range. The reported
experimental densities and kinematic viscosities-composition data were employed in
calculating the corresponding values of the absolute viscosities and excess volumes of
mixing for all examined systems. In addition, kinematic viscosity-composition data
were used to test the predictive capability of some literature viscosity models. Accord-
ing to Asfour’s [1] earlier classification of solutions of liquid mixtures, the components
of the quinary system under investigation were chosen from the regular type and with
differences in their structures and shapes.

It should be pointed out that the experimental results reported in the present study
represent additions to our database that is continuing to expand in order to provide
reliable viscosity-composition data for multicomponent liquid systems at different
temperatures. The reported data should help in both testing and developing future
predictive models.

All the pure components employed in the present study are miscible when mixed
over the temperature range of interest and over the entire composition range. This was
found to be true for all the binary, ternary, quaternary, and quinary systems investigated
in the study.

2 Experimental
2.1 Materials

Pure components constituting the systems investigated and the chemicals used in the
density meter calibration were purchased from Aldrich Chemical Company and Fluka
Chemika. The stated purities according to the manufactures were claimed to be 99+
mol %. Further analysis for all chemicals using gas chromatography analysis in our
laboratory led to values of purities that exceeded the stated ones (cf. Table 1). There-
fore, these chemicals were used as purchased without further purification. An HP
5890 gas chromatograph equipped with an FID and a 5m x 0.53 mm methyl silicon
capillary column has been used for that purpose.

2.2 Preparation of Solutions

The same technique proposed earlier by Asfour [1] was employed in this study for
preparing the 10 binary mixtures. A Mettler HK 160 balance with a stated precision
of £2 x 107 kg was used in weighing the different samples that were placed in vials
fitted with Teflon disks and aluminum seals in order to minimize evaporation losses.
The vials, Teflon disks, and aluminum seals were purchased from Chromatographic
Specialties Ltd.
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Table 1 Specifications of the chemicals used in the present study

Supplier Compound Specification GC analysis
(mol %) (mass %)

Aldrich Chemical Company Benzene 99+ 99.95
Toluene 99+ 99.04
Ethylbenzene 99+ 99.43
Heptane 99+ 99.53
Cyclooctane 99+ 99.64
p-Xylene? 99+ 99.24
Undecane? 99+ 99.94

Fluka-Chemika 1-Hexanol® > 99 99.12
1-Heptanol? > 99 99.82

4 Compounds used for the density meter calibration

2.3 Density Measurements

In the present study, the densities were measured using an Anton Paar DMA 60/602
density meter which has a stated precision of 3 x 107 g . cm ~3. The density meter
is connected to a Haake N4-B circulator fitted with a calibrated platinum temperature
sensor (IPTS-68). The density meter is enclosed in a controlled temperature wooden
box where temperature fluctuations were kept to within £0.1K as suggested earlier
by Asfour [1].

A DP95 digital RTD thermometer (ITS-90), supplied by Omega, was employed for
measuring the bath temperature. The thermometer has a temperature uncertainty of
0.005 K. The temperature fluctuations within the density meter cell were maintained
to within £0.01 K.

The densities of the different components were calculated from the following equa-
tion proposed by the supplier of the density meter.

At?

=—-C 1
1 — Bt? M

0

where p is the density in g - cm™3, 7 is the oscillation period in s, and (A, B, and

C) are equation parameters that were determined at 308.15K and 313.15K using
compounds with accurately known densities at the temperatures of interest. The cal-
ibration fluids were selected so that their densities cover the range of densities of the
compounds constituting the liquid mixture systems. The following fluids, the densi-
ties of which are known from the literature in g - cm ~3, were employed in calibrating
the density meter at 308.15K: p-xylene (0 = 0.8478 g - cm™) [2], double-distilled
water (p = 0.994061 g - cm~>) [3], undecane (p = 0.7291 g - cm —3) [4], 1-hex-
anol (p = 0.8080g - cm™) [4], I-heptanol (p = 0.8117 g - cm™>) [4], and NO.8
(p = 0.8538g - cm™>) and at 313.15K: p-xylene (p = 0.8436g - cm ™) [2], dou-
ble-distilled water ( p = 0.9922497 g - crn_3) [3], undecane (p = 0.7255¢ - cm_3)
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[4], 1-hexanol ( p = 0.8054 g - cm™3) [4], 1-heptanol ( p = 0.8077 g-cm™) [4], and
NO.8 (p = 0.8494 g - cm™3). The NO.8 fluid is a viscosity standard purchased from
Cannon Instrument Company for viscometer calibration. The densities and viscosities
of that fluid were accurately determined by the supplier at the temperatures of interest.
The calibration fluids had not been used as components of any of the investigated
systems. Error analysis calculations indicated an uncertainty of 3.5 x 10™*g . cm™3
in the density measurements.

2.4 Viscosity Measurements

The kinematic viscosities of all compounds in the present study were measured using
a set of eight Cannon-Ubbelohde capillary viscometers with a stated precision of
£0.1 %. Half of the viscometers used were of the size 25B whereas the other half
were of the size 50B. These particular sizes of viscometers were chosen so that they
cover the range of kinematic viscosities of the fluids, and their mixtures, under inves-
tigation.

The following equation was suggested by the supplier for the calculation of kine-
matic viscosities of the different compounds:

E
U=Ct—t—2 (2)

where v is the kinematic viscosity in m? - s~ 1, ¢ is the efflux time of the sample mea-
sured in seconds by using an electronic stopwatch with an uncertainty of 0.01s. C and
E are equation parameters to be determined by calibration standards with accurately
known kinematic viscosity values at the temperatures of interest. The calibration stan-
dard fluids employed in calibrating the viscometers used in the present study were
purchased from Cannon Instrument Company. The standard fluids have the follow-
ing nominal viscosity ranges over the temperatures of interest: N0.4 (0.4 to 0.47)
107°m? - s7!, N0.8 (0.6 t0 0.74) 107°m? - s™!, and N1.0 (0.97 to 1.3) 10 ®m? - s .
In order to minimize human error, three readings of the efflux time were taken that
should always agree within +0.1 s and the substituted value is the average of these
three measurements. The uncertainty in the kinematic viscosity measurements was
found to be within 2 x 10™" m?. s,

3 Results and Discussion

Table 2 reports the experimental values of the densities and kinematic viscosities of the
pure components involved in the present study along with their corresponding litera-
ture values. One can observe from Table 2 that there is excellent agreement between
the experimental values and their corresponding literature values.

The experimental values of the densities and kinematic viscosities were utilized to
calculate the corresponding absolute viscosities. The densities were used in calculat-
ing the excess volumes of mixing for all systems over the entire composition range.
Table 3 reports the data for such properties.
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Table 2 Physical properties of pure components and comparisons with literature values at 308.15K and
313.15K

Compound p(g- cm*S) v X 106(m2 . sfl)
Experimental Literature Experimental Literature
value value value value
T =308.15K
Benzene 0.8629 0.8629 [18] 0.6110 0.6066 [4]
Toluene 0.8528 0.8527 [19] 0.5792 0.5741 [4]
Ethylbenzene 0.8537 0.8548 [20] 0.6621 0.6614 [4]
Heptane 0.6714 0.6705 [21] 0.5209 0.5336 [4]
Cyclooctane 0.8236 0.8238 [22] 2.1887 -
T =313.15K
Benzene 0.8577 0.8575 [4] 0.5762 0.5722 [4]
Toluene 0.8483 0.8482 [4] 0.5512 0.5465 [4]
Ethylbenzene 0.8495 0.8494 [4] 0.6231 0.6286 [4]
Heptane 0.6671 0.6665 [4] 0.4990 0.5122 [4]
Cyclooctane 0.8197 0.81950 [23] 1.9958 2.0195 [23]

The excess volume of mixing, VE, can be calculated from the following equation
for any binary mixture:

2. xiM;

L
0

> ulh 3)

; Pi

vE =

where M is the molar mass, p is the density, and i denotes a pure component property.

Plots of the total apparent molar volumes, VvE /x1x2, [5] versus composition at
308.15K and 313.15K are shown in Figs. 1 and 2.

Models that were tested using our viscosity-composition data were the predictive
version of the McAllister three-body model proposed by Asfour et al. [6] and Nhaesi
and Asfour [7,8], a generalized corresponding states principle (GCSP) reported by
Teja and Rice [9], a group contribution method (GC-UNIMOD) reported by Cao et
al. [10], and the Allan and Teja Correlation [11].

McAllister [12] successfully developed his cubic equation for correlating the kine-
matic viscosities of binary liquid mixtures. This equation was regarded by many inves-
tigators as one of the best available correlating technique for binary liquid mixtures.
The reported McAllister three-body interaction model is as follows:

Invy, = x13€nv1 + 3x12x2 Invyy + 3x1x§ In vy
+x§' Invy — fn[x; +xo Mo/ M1] + 3x12x2 In[(2 + My /My)/3]

+3x1x5 €n[(1 4 2My/M1)/3] + x3 €n[My/M;] )
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Fig.1 Total apparent molar volume versus composition at 308.15 K. ¢ Benzene (1)-Toluene (2), M Toluene
(1)-Ethylbenzene (2), * Heptane (1)-Ethylbenzene (2), A Heptane (1)-Toluene (2), ¢ Benzene (1)-Ethyl-
benzene (2), ‘¢ Benzene (1)-Heptane (2), + Benzene (1)-Cyclooctane (2), A Toluene (1)-Cyclooctane (2),
XX Ethylbenzene (1)-Cyclooctane (2), [J Heptane (1)-Cyclooctane (2)

where M7 and M, are the molar masses of pure components 1 and 2, respectively, and
v12 and vy are binary interaction parameters. The determination of these interaction
parameters requires the availability of costly and time consuming experimental data
which is considered as the main drawback of the McAllister model [12].

Asfour et al. [6] and Nhaesi and Asfour [7,8] successfully converted the McAllister
model from a correlative technique into a predictive one. This was achieved by devel-
oping a new technique for the calculation of the McAllister interaction parameters
numerically by only employing the viscosities of the pure components constituting a
mixture, the number of carbon numbers of the components for the case of n-alkane
systems, or the number of effective carbons for the case of regular solutions. They
reported the following equations for both n-alkanes and regular solution binary mix-
tures:

No — Ni)?
Lm =1+ 0.044% (5)
(vi°v2) (M1*N2)
N> — Nip)?
Lm — 0.8735 + 0.0715(22—1133 (6)
(v1%12) (N1*N2)
13
V
» =V (V—?) @)
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Fig.2 Total apparent molar volume versus composition at 313.15 K. ¢ Benzene (1)-Toluene (2), M Toluene
(1)-Ethylbenzene (2), * Heptane (1)-Ethylbenzene (2), A Heptane (1)-Toluene (2), { Benzene (1)-Ethyl-
benzene (2), ‘¢ Benzene (1)-Heptane (2), + Benzene (1)-Cyclooctane (2), A Toluene (1)-Cyclooctane (2),
X Ethylbenzene (1)-Cyclooctane (2), [J Heptane (1)-Cyclooctane (2)

where N and N; are the number of carbons (or effective carbons; as indicated earlier)
for components 1 and 2, respectively. Nhaesi and Asfour [7] reported the following
equation to calculate the effective carbon number for any component by substituting
its kinematic viscosity value at 308.15K:

oy = —1.943 4 0.193N ®)

The values of Ny and N, calculated from the above equation can then be substituted
back into Eq. 6 along with their corresponding kinematic viscosity values; vy and vy
are used to determine the value of the first interaction parameter vy;. The value of the
second parameter vp| can be obtained by using Eq.7.

This procedure was performed for all pure components involved in the 10 binary
liquid mixtures investigated in the present study. All the results for pure components
were substituted into the McAllister Eq.4 to estimate the corresponding predicted
values of kinematic viscosities of each mixture, v,,.

The experimental and predicted values of kinematic viscosities of all mixtures
were then compared using the percent absolute average deviation concept (%2AAD)
as follows:

measured __ vpredicted

n
)vl 1

1
%AAD = ; Z vmeasured

i=1 i

x 100 )
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The maximum deviation of the predicted results may be determined from the following
function:

measured
Vi

vmeasured _ 1)predicted
I MAX = MAX L ! % 100 (10)

Table 3 reports the results of the above mentioned comparisons as well as the results
of testing the different models.

It should be pointed out here that, applying Eq. 6 for some of the investigated sys-
tems, namely, benzene—toluene, benzene—ethylbenzene, and toluene—ethylbenzene,
led to higher errors than were expected. This confirmed earlier findings that were
reported by Al-Gherwi et al. [13]. It was found that applying Eq. 5 which was proposed
for n-alkanes for those particular systems gave much better results and dramatically
reduced the error. These authors’ explanation for such phenomena was that the effects
of the benzene rings contained in the compounds constituting those mixtures tend to
off-set each other and that interactions would mainly be due to the side chain, viz.,
CHj3 and CH,;—CH3 n-alkane groups (Table4).

Al Gherwi et al. [13], El-Hadad [14], and Cai [15] also observed in their studies
of the viscosities of liquid mixtures containing cyclohexane that Eq. 8 tended to over-
predict the value of the effective carbon number of cyclohexane. Much lower errors
that resulted from testing the McAllister model were obtained when applying 75 % of
the value that was calculated from Eq. 8.

In the present study, for the case of cyclooctane, an effective carbon number value
calculated from Eq.8 was 14.126. That value as well as 75 % of that value, which is
10.595, were both employed for testing the McAllister model. The second value gave
better results as shown in Table 5 which confirmed the findings of the former studies
referred previously.

The present authors noticed that unexpected error values resulted when testing
the McAllister three-body interaction model given by Eq.4 for systems containing
cyclooctane. We believe that such a result requires the development of the four-body
interaction model to be tested instead. This is simply due to the relatively large dif-
ference between the molecular diameter of cyclooctane and the second component
constituting the binary system that led to those high deviations. Similar results were
reported by McAllister [16] while studying the acetone—water system.

Figures 3 and 4 summarize the results of testing the predictive capability of the dif-
ferent investigated models including and excluding cyclooctane-containing systems,
respectively, and the effect of that on the calculated %AAD.

It should be pointed out here that, applying the GC-UNIMOD method, required
data on the UNIFAC group specifications and sample group assignments which were
taken from Poling et al. [17].

4 Conclusions

Densities and kinematic viscosities of 10 binary regular mixtures were measured over
the entire composition range at 308.15K and 313.15K. The measured values of the
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Table 5 Effect of cyclooctane effective carbon number (N) change on the predictive capability of
McAllister model

Cyclooctane (N = 14.126)  Cyclooctane (N = 10.595)

System T (K) %AAD %MAX %AAD  %MAX

Benzene (1)-Cyclooctane (2) 308.15 20.96 35.50 12.82 21.48
313.15 20.01 33.95 11.96 20.07

Toluene (1)-Cyclooctane (2) 308.15 25.24 43.41 16.53 28.82
313.15 24.76 47.38 16.08 31.68

Ethylbenzene (1)-Cyclooctane (2) 308.15  23.53 39.55 16.22 27.05
313.15 22.07 37.32 14.88 25.53

Heptane (1)-Cyclooctane (2) 308.15 2592 45.18 16.80 29.70
313.15 25.10 43.46 16.06 28.17

Overall %AAD 23.45 15.17

16.00

14.00 il

12.00

10.00 sy 974 $.79

500

\
&\

e AAD

4.00

200

MecAllister GC-UNIMOD GC-UNIMOD{R=0) GCsP

Viscosity Models

Fig. 3 Comparison of the predictive capabilities of the tested viscosity models including cyclooctane
containing systems

densities and kinematic viscosities were employed in calculating the corresponding
absolute viscosities and excess volumes of mixtures at 308.15K and 313.15K for the
10 investigated systems.

Kinematic viscosity-composition data were utilized to examine the predictive capa-
bilities of some viscosity models, namely, the McAllister three-body model, the
GC-UNIMOD method, the GCSP method, and the Allan and Teja correlation. The
reported results showed lower %A ADs for the McAllister model compared to the other
three for all binary systems except for those containing cyclooctane.
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Fig. 4 Comparison of the predictive capabilities of the tested viscosity models excluding cyclooctane
containing systems

It is our view that the deviations from expected values for such systems are due
to the relatively high ratio between the molecular diameters of cyclooctane and the
second component in the system. The present authors are currently attempting to
develop a four-body interaction model and to extend the techniques reported earlier by
Asfour et al. [6] and Nhaesi and Asfour [7,8] to cyclooctane-containing systems. This
is needed in order to improve the predictive capability of the McAllister model for
these systems.
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